Let’s read in the Davis data.

davis.data <- read.table("./Davis.txt")
davis.data[12, "height"] <- 166
davis.data[12, "weight"] <- 57

# remove rows with missing data
davis.data <- davis.data[complete.cases(davis.data), ]

# take a look at the data
davis.data
##     sex weight height reportedWeight reportedHeight
## 1     M     77    182             77            180
## 2     F     58    161             51            159
## 3     F     53    161             54            158
## 4     M     68    177             70            175
## 5     F     59    157             59            155
## 6     M     76    170             76            165
## 7     M     76    167             77            165
## 8     M     69    186             73            180
## 9     M     71    178             71            175
## 10    M     65    171             64            170
## 11    M     70    175             75            174
## 12    F     57    166             56            163
## 13    F     51    161             52            158
## 14    F     64    168             64            165
## 15    F     52    163             57            160
## 16    F     65    166             66            165
## 17    M     92    187            101            185
## 18    F     62    168             62            165
## 19    M     76    197             75            200
## 20    F     61    175             61            171
## 21    M    119    180            124            178
## 22    F     61    170             61            170
## 23    M     65    175             66            173
## 24    M     66    173             70            170
## 25    F     54    171             59            168
## 26    F     50    166             50            165
## 27    F     63    169             61            168
## 28    F     58    166             60            160
## 29    F     39    157             41            153
## 30    M    101    183            100            180
## 31    F     71    166             71            165
## 32    M     75    178             73            175
## 33    M     79    173             76            173
## 34    F     52    164             52            161
## 35    F     68    169             63            170
## 36    M     64    176             65            175
## 37    F     56    166             54            165
## 38    M     69    174             69            171
## 39    M     88    178             86            175
## 40    M     65    187             67            188
## 41    F     54    164             53            160
## 42    M     80    178             80            178
## 43    F     63    163             59            159
## 44    M     78    183             80            180
## 45    M     85    179             82            175
## 46    F     54    160             55            158
## 49    F     54    174             56            173
## 50    F     75    162             75            158
## 51    M     82    182             85            183
## 52    F     56    165             57            163
## 53    M     74    169             73            170
## 54    M    102    185            107            185
## 56    M     65    176             64            172
## 58    M     73    183             74            180
## 59    M     75    172             70            169
## 60    M     57    173             58            170
## 61    M     68    165             69            165
## 62    M     71    177             71            170
## 63    M     71    180             76            175
## 64    F     78    173             75            169
## 65    M     97    189             98            185
## 66    F     60    162             59            160
## 67    F     64    165             63            163
## 68    F     64    164             62            161
## 69    F     52    158             51            155
## 70    M     80    178             76            175
## 71    F     62    175             61            171
## 72    M     66    173             66            175
## 73    F     55    165             54            163
## 74    F     56    163             57            159
## 75    F     50    166             50            161
## 77    F     50    160             55            150
## 78    F     63    160             64            158
## 79    M     69    182             70            180
## 80    M     69    183             70            183
## 81    F     61    165             60            163
## 82    M     55    168             56            170
## 83    F     53    169             52            175
## 84    F     60    167             55            163
## 85    F     56    170             56            170
## 86    M     59    182             61            183
## 87    M     62    178             66            175
## 88    F     53    165             53            165
## 89    F     57    163             59            160
## 90    F     57    162             56            160
## 91    M     70    173             68            170
## 92    F     56    161             56            161
## 93    M     84    184             86            183
## 94    M     69    180             71            180
## 95    M     88    189             87            185
## 96    F     56    165             57            160
## 97    M    103    185            101            182
## 98    F     50    169             50            165
## 99    F     52    159             52            153
## 101   F     55    164             55            163
## 102   M     63    178             63            175
## 103   F     47    163             47            160
## 104   F     45    163             45            160
## 105   F     62    175             63            173
## 106   F     53    164             51            160
## 107   F     52    152             51            150
## 108   F     57    167             55            164
## 109   F     64    166             64            165
## 110   F     59    166             55            163
## 111   M     84    183             90            183
## 112   M     79    179             79            171
## 113   F     55    174             57            171
## 114   M     67    179             67            179
## 115   F     76    167             77            165
## 116   F     62    168             62            163
## 117   M     83    184             83            181
## 118   M     96    184             94            183
## 119   M     75    169             76            165
## 120   M     65    178             66            178
## 121   M     78    178             77            175
## 122   M     69    167             73            165
## 123   F     68    178             68            175
## 124   F     55    165             55            163
## 128   F     45    157             45            153
## 129   F     68    171             68            169
## 130   F     44    157             44            155
## 131   F     62    166             61            163
## 132   M     87    185             89            185
## 133   F     56    160             53            158
## 134   F     50    148             47            148
## 135   M     83    177             84            175
## 136   F     53    162             53            160
## 137   F     64    172             62            168
## 139   M     90    188             91            185
## 140   M     85    191             83            188
## 141   M     66    175             68            175
## 142   F     52    163             53            160
## 143   F     53    165             55            163
## 144   F     54    176             55            176
## 145   F     64    171             66            171
## 146   F     55    160             55            155
## 147   F     55    165             55            165
## 148   F     59    157             55            158
## 149   F     70    173             67            170
## 150   M     88    184             86            183
## 151   F     57    168             58            165
## 152   F     47    162             47            160
## 153   F     47    150             45            152
## 155   F     48    163             44            160
## 156   M     54    169             58            165
## 157   M     69    172             68            174
## 160   F     57    167             56            165
## 161   F     51    163             50            160
## 162   F     54    161             54            160
## 163   F     53    162             52            158
## 164   F     59    172             58            171
## 165   M     56    163             58            161
## 166   F     59    159             59            155
## 167   F     63    170             62            168
## 168   F     66    166             66            165
## 169   M     96    191             95            188
## 170   F     53    158             50            155
## 171   M     76    169             75            165
## 173   M     61    170             61            170
## 175   M     62    168             64            168
## 176   M     71    178             68            178
## 178   M     66    170             67            165
## 179   M     81    178             82            175
## 180   M     68    174             68            173
## 181   M     80    176             78            175
## 184   F     63    165             59            160
## 185   M     70    173             70            173
## 186   F     56    162             56            160
## 187   F     60    172             55            168
## 188   F     58    169             54            166
## 189   M     76    183             75            180
## 190   F     50    158             49            155
## 191   M     88    185             93            188
## 192   M     89    173             86            173
## 193   F     59    164             59            165
## 194   F     51    156             51            158
## 195   F     62    164             61            161
## 196   M     74    175             71            175
## 197   M     83    180             80            180
## 199   M     90    181             91            178
## 200   M     79    177             81            178

You need to fill out the following sections for answering the questions.

Construct \(X\), \(X^TX\), and \(Y\).

# construct the design matrix
X <- 
# assign names to X column
colnames(X) <- c("intercept", "reportedWeight")

# construct the Gramian matrix
gramian.mat <- 
gramian.mat

# calculate the inverse of the Gramian matrix
gramian.mat.inv <- solve(gramian.mat)

# construct the Y matrix
Y <- as.matrix(davis.data[, "weight"])

Q1. Now let’s calculate the least square estimates

# Now calculate the LS estimate
beta.estimate <- 
beta.estimate

Q2. Now calculate the variance-covariance matrix to get the standard error of \(\hat{\beta}_1\)

# calculate sum of squared errors (or residuals)
sse <- 
sse

# calculate mean squared errors
mse <- 
mse

# calculate the variance-covariance matrix for beta hat
sigma.matrix <- 
sigma.matrix

# standard error for beta_1
sqrt(sigma.matrix[2, 2])

Q3. Hypothesis test of \(H_0: \beta_1 = 0\)

t(0.025, 179) critical value (the design matrix has 181 rows / 181 observations):

qt(1.0 - 0.025, 179) #take a look at the documentation of "qt"
# t statistic
t.statistic <- 

Q4. Mean weight estimate given reportedWeight = 72:

a.vector <- c(1, 72)
mean.weight.est <- 
mean.weight.est

Q5. standard error:

theta.se <- sqrt()
theta.se

Q6. 95% confidence interval:

confidence.interval <- 
confidence.interval

Use lm to check

(lmod <- lm(weight ~ reportedWeight, data = davis.data))
## 
## Call:
## lm(formula = weight ~ reportedWeight, data = davis.data)
## 
## Coefficients:
##    (Intercept)  reportedWeight  
##          2.847           0.957
summary(lmod)
## 
## Call:
## lm(formula = weight ~ reportedWeight, data = davis.data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.5029 -1.0943 -0.1374  1.0884  6.3465 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     2.84707    0.80817   3.523 0.000542 ***
## reportedWeight  0.95699    0.01204  79.472  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.235 on 179 degrees of freedom
## Multiple R-squared:  0.9724, Adjusted R-squared:  0.9723 
## F-statistic:  6316 on 1 and 179 DF,  p-value: < 2.2e-16
predict(lmod, newdata = data.frame("1" = 1, "reportedWeight" = 72), interval = "confidence")
##        fit      lwr      upr
## 1 71.75025 71.38966 72.11084