HW2 Due: March 3rd

1 Probability integral transformation

Let X have continuous cdf $F_{X}(x)$ and define the random variable Y as $Y=F_{X}(X)$. Show that Y is uniformly distributed on $(0,1)$, in other words $\operatorname{Pr}(Y \leqslant y)=y, 0<y<1$.

2 JF excercise 5.7

Consider the general multiple-regression equation

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\epsilon
$$

An alternative procedure for calculating the least-squares coefficient $\hat{\beta}_{1}$ is as follow:

1. Regress Y on X_{2} through X_{k}, obtaining residuals $E_{Y \mid 2 \ldots k}$.
2. Regress X_{1} on X_{2} through X_{k}, obtaining residuals $E_{1 \mid 2 \ldots k}$.
3. Regress the residuals $E_{Y \mid 2 \ldots k}$ on the residuals $E_{1 \mid 2 \ldots k}$. The slope for this simple regression is the multiple-regression slope for X_{1}, that is, $\hat{\beta}_{1}$.
(a) Apply this procedure to the multiple regression of the prestige on education and income. Confirm that the coefficient for education is properly recovered.
(b) The intercept for the simple regression in Step 3 is 0 . Why is this the case?
(c) The procedure in this problem reduces the multiple regression to a series of simple regressions (in step 3). Can you see any practical application for this procedure?

3 Finish the following questions using R

1. Install the R package "carData", read the documentation of the dataset "Highway1" under the package, list all variables in the "Highway1" dataset and explain what they are.
2. Use rate as the response variable, use all other variables except "htype" to fit a multiple linear regression and finish the following questions
(a) Calculate the total sum of squares, regression sum of squares and residual sum of squares
(b) Calculate the least square estimate by using equation $\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$
(c) Get an estimate of the standard errors of the least square estimate of the coefficients.
(d) Test the null hypothesis of $H_{0}: \beta_{\text {trks }}=0$ vs $H_{a}: \beta_{\text {trks }} \neq 0$. Report the p-value.
(e) Test the null hypothesis of $H_{0}: \beta_{l e n}=\beta_{\text {adt }}=\cdots=\beta_{\text {lwid }}=0$. Write out the alternative hypothesis. What test statistic do you get, report the associated p-value.
(f) Calculate the variance inflation factors. Report your findings.
